Folate receptor targeted biodegradable polymeric doxorubicin micelles.

نویسندگان

  • Hyuk Sang Yoo
  • Tae Gwan Park
چکیده

Biodegradable polymeric micelles, self-assembled from a di-block copolymer of poly(D,L-lactic-co-glycolic acid) (PLGA) and poly(ethylene glycol) (PEG), were prepared to achieve folate receptor targeted delivery of doxorubicin (DOX). In the di-block copolymer structure of PLGA-b-PEG, DOX was chemically conjugated to a terminal end of PLGA to produce DOX-PLGA-mPEG, and folate was separately conjugated to a terminal end of PEG to produce PLGA-PEG-FOL. The two di-block copolymers with different functional moieties at their chains ends were physically mixed with free base DOX in an aqueous solution to form mixed micelles. It was expected that folate moieties were exposed on the micellar surface, while DOX was physically and chemically entrapped in the core of micelles. Flow cytometry and confocal image analysis revealed that folate conjugated mixed micelles exhibited far greater extent of cellular uptake than folate unconjugated micelles against KB cells over-expressing folate receptors on the surface. They also showed higher cytotoxicity than DOX, suggesting that folate receptor medicated endocytosis of the micelles played an important role in transporting an increased amount of DOX within cells. In vivo animal experiments, using a nude mice xenograft model, demonstrated that when systemically administered, tumor volume was significantly regressed. Biodistribution studies also indicated that an increased amount of DOX was accumulated in the tumor tissue.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrolysable core crosslinked particle for receptor-mediated pH-sensitive anticancer drug delivery.

Biodegradable micelle systems with both extracellular stabilities and specific targeting properties are highly desirable for anti-cancer drug delivery. Here, we report a biodegradable and crosslinkable poly(propylene fumarate)-co-poly(lactide-co-glycolide)-co-poly(ethylene glycol) (PPF-PLGA-PEG) copolymer conjugated with folate (FA) molecules for receptor-mediated delivery of doxorubicin. Micel...

متن کامل

Target-specific cellular uptake of folate-decorated biodegradable polymer micelles.

For cancer therapy, folate (FA) and β-cyclodextrin (β-CD) decorated micelles based on the biodegradable pluronic F127-b-poly(ε-caprolactone) copolymer were fabricated. These micelles were measured by dynamic light scattering measurements and atomic force microscopy. The in vitro release of doxorubicin hydrochloride (DOX·HCl) from the biodegradable polymer micelles was performed in a phosphate-b...

متن کامل

Biodegradable polymeric micelles composed of doxorubicin conjugated PLGA-PEG block copolymer.

Biodegradable polymeric micelles containing doxorubicin in the core region were prepared from a di-block copolymer composed of doxorubicin-conjugated poly(DL-lactic-co-glycolic acid) (PLGA) and polyethyleneglycol (PEG). The di-block copolymer of PLGA-PEG was first synthesized and the primary amino group of doxorubicin was then conjugated to the terminal hydroxyl group of PLGA, which had been pr...

متن کامل

Folate-functionalized polymeric micelles for tumor targeted delivery of a potent multidrug-resistance modulator FG020326.

To overcome multidrug resistance (MDR) existing in tumor chemotherapy, polymeric micelles encoded with folic acid on the micelle surface were prepared with the encapsulation of a potent MDR modulator, FG020326. The micelles were fabricated from diblock copolymers of poly(ethylene glycol) (PEG) and biodegradable poly(epsilon-caprolactone) (PCL) with folate attached to the distal ends of PEG chai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of controlled release : official journal of the Controlled Release Society

دوره 96 2  شماره 

صفحات  -

تاریخ انتشار 2004